centrifugal pump solved examples|centrifugal pump textbook pdf : Brand The solutions to the example problems below include answers rounded to a reasonable number of digits to avoid implying a greater level of accuracy than truly exists. HYANG series shale shaker has high vibration intensity, adjustable pitch, compact structure, reliable performance, and cost-effectiveness, so our HYZS and HYPS series shale shaker is widely known in both domestic and oversea markets.. Drilling rig shakers screen the drilling fluid containing a large number of cuttings, separate large-size solid particles, and send the drilling .
{plog:ftitle_list}
Proper sizing of decanter centrifuges is essential to ensure optimal performance and process efficiency.
Centrifugal pumps are widely used in various industries for fluid transportation and are known for their efficiency and reliability. In this article, we will explore a centrifugal pump example to understand how these pumps work and how to calculate important parameters.
The document contains 5 solved problems related to centrifugal pumps. The problems cover topics like calculating head, power required, efficiency,
Example:
A centrifugal pump has an outlet diameter equal to two times the inner diameter and is running at 1200 rpm. The pump works against a total head of 75 m. We need to calculate the velocity of flow through the impeller.
Solution:
To calculate the velocity of flow through the impeller, we can use the formula:
\[ V = \frac{Q}{A} \]
Where:
- \( V \) = Velocity of flow (m/s)
- \( Q \) = Flow rate (m\(^3\)/s)
- \( A \) = Area of the impeller (m\(^2\))
First, we need to calculate the flow rate using the formula:
\[ Q = \frac{\pi \times D^2 \times N}{4 \times 60} \]
Where:
- \( D \) = Diameter of the impeller (m)
- \( N \) = Pump speed (rpm)
Given that the outlet diameter is two times the inner diameter, we can calculate the diameter of the impeller:
Inner diameter, \( D_i = D \)
Outlet diameter, \( D_o = 2D \)
Area of the impeller, \( A = \frac{\pi}{4} \times (D_o^2 - D_i^2) \)
Substitute the values and calculate the flow rate:
\[ Q = \frac{\pi \times (2D)^2 \times 1200}{4 \times 60} \]
Next, we calculate the area of the impeller:
\[ A = \frac{\pi}{4} \times ((2D)^2 - D^2) \]
Now, we can calculate the velocity of flow using the formula mentioned earlier.
Dimensionless performance curves for a typical centrifugal pump from data given in Fig. 14.9 Fig. (14.10)
The BEM-650 shaker is the third-generation balanced-elliptical-motion shale shaker from M-I SWACO. Its performance is centered on our field-proven and patented, balanced-elliptical-motion technology. Independent testing has confirmed that, compared with other shaker types, this gentle rolling motion consistently provides better solids
centrifugal pump solved examples|centrifugal pump textbook pdf